B.M.S INPUT - OUTPUT MODULES SINGLE AND ADJUSTABLE RELAY

DIN RAIL mounted relay modules compatible with building management systems, providing a switched output when an input signal is applied. The 12VDC relay is suitable for use with TREND controllers ONLY which give a $0-10 \mathrm{vdc}$ output. For other $0-10 \mathrm{vdc}$ systems use model ESRM-10.				24 / 230.		Volt free contacts Din rail mounting Max Ambient -20 /+50 C Auto eject relay clip Flammability = UL94-V0 ESRM-10 only: Off-On-Auto link to aid commissioning. LED light on when relay energised. Input current $>0.5 \mathrm{~mA}$	
Type	Switch Point Input Approx.	Voltage	Resistance	Coil Current Approx mA	Switch Rating 230VAC SPDT	Compatibility	Enclosure
ESRM-12DC	8 VDC	12 VDC	576Ω	20	(3)A	TREND I-Q 0 10vdc ONLY	IP00
ESRM-24DC	17 VDC	24 VDC	1440Ω	18	12(3)A	24 vdc B.M.S. controllers	IP00
ESRM-24AC	17 VAC	24 VAC	350Ω	32	12(3)A	TREND IQ	IP00
ESRM-230AC	172 VAC	230 VAC	32500Ω	3.3	12(3)A	Most B.M.S. controllers	IP00
Type	Input	Supply $\pm 15 \%$		Switch Rating 230VAC SPDT	Feedback Output	Consumption	Enclosure
ESRM-10	0-10VDC adj.	24VAC/DC		10(3)A	0-10VDC	51 mA	IP00

DIMENSIONS

ESRM-12 / 24/ 230.

ESRM-10

INPUT-OUTPUT MODULES

B.M.S RELAY OVERRIDE MODULE 1-4 X 0-10VDC INPUTS 4 RELAY OUTPUTS

DIMENSIONS:
AX-ORM4C Connection

WIRING:

Up to $4 \times 0-10 \mathrm{vdc}$ inputs

Each 0-10vdc input and relay output is independent. Outputs 1,2,3 or 4 can be linked to just one input IN1.
C-NO makes at approx >5 vdc for each relay and C-NC makes at approx <4vdc for each relay. ie 0-4vdc OFF 5-10vdc ON.

O - Link to switch relay permanently off.
H - Link to switch relay permanently on.
A - Link to switch relay via the input signal. IN1 -

ALL ON - Link to switch all output relays permanently on. NORMAL - Link to switch the relays via 0-10vdc input. Outputs 1,2,3 or 4 can be linked to switch from $1 \times 0-10 \mathrm{v}$ input.

Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Screened cable is recommended Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT OUTPUT MODULES 2 STAGE RELAY, RAISE - LOWER, HIGH LOW 0-10VDC

E2RM..

INSTALLATION:

HIGH-LOW Mode - Relays switch in sequence.

High/Low	LOW	HIGH
0 v	OFF	OFF
5 v	ON	OFF
10 v	ON	ON

RAISE-LOWER Mode - Relays switch as shown in the table below.

Raise/Lower	LOWER	RAISE
0 v	OFF	OFF
5 v	ON	OFF
7 v	OFF	OFF
10 v	OFF	ON

All values are maximum switching points. Exact switching points may be slightly lower than those stated

Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Screened cable is recommended
Keep sensor/control signal wires away from power cables/units which may cause interference.

B．M．S INPUT－OUTPUT MODULES 3 STAGE RELAY，SEQUENCE，BINARY 0－10VDC

E3RMT．．

These products accept a 0－10vdc input and produce a 3 stage relay output which can be used for external plant switching． 4 modes of operation can be selected： 3 stage switching，Heat－Cool＋Fan， Sequence or 2 Stage Binary．
For multi－stage heating \＆cooling， 2 of these units or other relay modules can be used with the E13．．temperature controllers or similar．

ON－OFF－AUTO Manual Override
links on each relay：－

ON	$=$ Energised
OFF	$=$ De－energised
AUTO	$=$ Controller operated

AUTO＝Controller operated
Volt free contacts LED＇s indicate relay status
Din－Rail mounting
Consumption 80 mA
Input current＞ 1 mA
Max Ambient $-10 /+50^{\circ} \mathrm{C}$
Flammability＝UL94－V0

Type	Supply $+-15 \%$	Input Signal	Switch Rating $230 V A C ~ S P D T$	Operation Selectable	Time Delay	Enclosure
E3RMT	24 VAC／DC	$0-10 V D C$	$3 \times 10(3) A$	3 Stage relay or Fan + Cool／Heat Sequence or 2 Stage Binary	0－60s	IP00

DIMENSIONS：

WIRING：

	REV OVIN OV 24 V			
		且	\％	
Mode 1	戒）	Ано	Ано	А H O
Mode 2	皿可	－		
Step	ow off	R1	R2	R3
	30			
TimeDelay	$0 \oplus 60$	\cdots	$\pm \times$	$\square \times$

Time Delay ：	Allows a time period before each stage switches on or off．
	Set to 0 if not required．

MODE	MODE 1	MODE 2
3 stage	C	C
Fan＋heat／cool	B	A
Sequence	C	B
2 stage Binary	B	B

INSTALLATION：
3 STAGE RELAY MODE
FAN－HEAT－COOL MODE
SEQUENCE MODE
BINARY MODE
Only 1 stage on at any time

	RL1	RL1	RL2
$0 v$	OFF	OFF	OFF
$4 v$	ON	OFF	OFF
$7 v$	OFF	ON	OFF
$10 v$	OFF	OFF	ON

	OUT 1	OUT 2
$0 v$	OFF	OFF
$4 v$	ON	OFF
$7 v$	OFF	ON
$10 v$	ON	ON

All values are maximum switching points．Exact switching points may be slightly lower than those stated

Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Screened cable is recommended Keep sensor／control signal wires away from power cables／units which may cause interference．

Max length 100 m
Min sensor／control signal cable size $7 / 0.2 \mathrm{~mm}$

	FAN	COOL	HEAT
$0 v$	OFF	OFF	OFF
$4 v$	ON	ON	OFF
$7 v$	ON	OFF	OFF
$10 v$	ON	OFF	ON

1－3 switch on as input increases

	LOW	MID	HIGH
$0 v$	OFF	OFF	OFF
$4 v$	ON	OFF	OFF
$7 v$	ON	ON	OFF
$10 v$	ON	ON	ON

B.M.S INPUT - OUPUT MODULES 4 STAGE RELAY, SEQUENCE, BINARY 0-10VDC

UP TO 10 STAGED SWITCHING ACROSS 0-10VDC CAN BE ACHIEVED WHEN THIS PRODUCT IS USED WITH THE E6RM

DIMENSIONS:

MODE RESET LINK : Remove link before changing modes and re-fit the link to reset the operation.

TIME DELAY : Allows a time period between each stage switching on or off.

INSTALLATION:

STAGED MODE mode1 $=\mathrm{C} \quad$ mode2 $=\mathrm{C}$
Relays $1-4$ switch on as the input signal increases

INPUT	RLY 1	RLY 2	RLY 3	RLY 4
0 v	OFF	OFF	OFF	OFF
2.4 V	ON	OFF	OFF	OFF
4.8 V	ON	ON	ON	OFF
7.2 V	ON	ON	ON	OFF
9.6 V	ON	ON	ON	ON

SEQUENCED MODE mode1 $=\mathrm{C} \quad$ mode2 $=\mathrm{C}$ Only one relay is on at any time

INPUT	RLY 1	RLY 2	RLY 3	RLY 4
0 v	OFF	OFF	OFF	OFF
2.4 V	ON	OFF	OFF	OFF
4.8 V	OFF	ON	OFF	OFF
7.2 V	OFF	OFF	ON	OFF
9.6 V	OFF	OFF	OFF	ON

STAGED MODE mode1 $=\mathrm{A} \quad$ mode $2=\mathrm{B}$
Relays 4-1 switch on as the input signal increases when terminals R-R are closed via a volt free contact.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4
OV	OFF	OFF	OFF	OFF
2.4 V	OFF	OFF	OFF	ON
4.8 V	OFF	OFF	ON	ON
7.2 V	OFF	ON	ON	ON
9.6 V	ON	ON	ON	ON

STAGED MODE + E6RM = 10 STG. JP1 = B JP2 = A
Connect 0-10VDC to both E6RM and E4RM.
No time delay or reverse action.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4
6 V	OFF	OFF	OFF	OFF
7 V	ON	OFF	OFF	OFF
8 V	ON	ON	OFF	OFF
9 V	ON	ON	ON	OFF
10 V	ON	ON	ON	ON

BINARY MODE JP1 = B JP2 = B

INPUT	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6.0	6.6	7.2	7.8	8.4	9.4	9.6
RLY 1	OFF	ON														
RLY 2	OFF	OFF	ON	ON												
RLY 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF	OFF	OFF	ON	ON	ON	ON
RLY 4	OFF	ON														

All values are maximum switching points. Exact switching points may be slightly lower than those stated
Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
Max length 100 m
Screened cable is recommended
The screen should be earthed at controller end only
Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT - OUTPUT MODULES 6 (10) STAGE RELAY, SEQUENCE 0-10VDC

E6RM

UP TO 10 STAGED SWITCHING ACROSS 0-10VDC CAN BE ACHIEVED WHEN THIS PRODUCT IS USED WITH THE E4RM

DIMENSIONS:

MODE RESET LINK : Remove link before changing modes and re-fit the link to reset the operation.
TIME DELAY : Allows a time period between each stage switching on or off.

WIRING:

NC NOC NCNOC NCNOC NCNOC NCNOC NCNOC

INSTALLATION:

STAGED MODE mode1 $=\mathrm{C} \quad$ mode2 $=\mathrm{C}$
Relays $1-6$ switch on as the input signal increases.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4	RLY 5	RLY 6
0 v	OFF	OFF	OFF	OFF	OFF	OFF
2 v	ON	OFF	OFF	OFF	OFF	OFF
3 v	ON	ON	OFF	OFF	OFF	OFF
4.5 v	ON	ON	ON	OFF	OFF	OFF
6 v	ON	ON	ON	ON	OFF	OFF
7.8 v	ON	ON	ON	ON	ON	OFF
10 v	ON	ON	ON	ON	ON	ON

SEQUENCED MODE mode1 $=\mathrm{C} \quad$ mode $2=\mathrm{B}$ Only one relay is on at any time.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4	RLY 5	RLY 6
0 v	OFF	OFF	OFF	OFF	OFF	OFF
2 v	ON	OFF	OFF	OFF	OFF	OFF
3 v	OFF	ON	OFF	OFF	OFF	OFF
4.5 v	OFF	OFF	ON	OFF	OFF	OFF
6 v	OFF	OFF	OFF	ON	OFF	OFF
7.8 v	OFF	OFF	OFF	OFF	ON	OFF
10 v	OFF	OFF	OFF	OFF	OFF	ON

STAGED MODE - REVERSE D mode1 = A mode2 = B
Relays 6-1 switch on as the input signal increases when terminals R-R are closed via a volt free contact.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4	RLY 5	RLY 6
$0 v$	OFF	OFF	OFF	OFF	OFF	OFF
$2 v$	OFF	OFF	OFF	OFF	OFF	ON
$3 v$	OFF	OFF	OFF	OFF	ON	ON
4.5 v	OFF	OFF	OFF	ON	ON	ON
$6 v$	OFF	OFF	ON	ON	ON	ON
$7.8 v$	OFF	ON	ON	ON	ON	ON
$10 v$	ON	ON	ON	ON	ON	ON

STAGED MODE + E4RM $=10$ STAGES JP1=B JP2=A Connect 0-10VDC to both E6RM and E4RM. No time delay or reverse action.

$\mathbb{I N P U T}$	RLY 1	RLY 2	RLY 3	RLY 4	RLY 5	RLY 6
0 v	OFF	OFF	OFF	OFF	OFF	OFF
$1 v$	ON	OFF	OFF	OFF	OFF	OFF
$2 v$	ON	ON	OFF	OFF	OFF	OFF
$3 v$	ON	ON	ON	OFF	OFF	OFF
$4 v$	ON	ON	ON	ON	OFF	OFF
$5 v$	ON	ON	ON	ON	ON	OFF
$10 v$	ON	ON	ON	ON	ON	ON

All values are maximum switching points. Exact switching points may be slightly lower than those stated
$\begin{array}{ll}\text { Terminals } 0.5-2.5 \mathrm{~mm}^{2} \text { rising clamps } & \text { Min sensor / control signal cable size } 7 / 0.2 \mathrm{~mm} \\ \text { Screened cable is recommended } & \text { The screen should be earthed at controller end only }\end{array}$
Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT - OUTPUT MODULES 0-10VDC TO 0-20V PHASE CUT

E..PCM

DIMENSIONS

For the 24VAC POWER SUPPLY select transformer VA rating according to actuator rating.
NOTE: The ESPCM \& EHPCM can only be used for $1 \times 0-10 \mathrm{VDC}$ input \& $1 \times 0-20 \mathrm{~V}$ phase cut output using channel 1 .
The EDPCM can be used for 2×0-10VDC input $\& 2 \times 0-20 \mathrm{~V}$ phase cut output using channels $1 \& 2$.
If the $0-10 \mathrm{VDC}$ input signal is removed, that channel will be cut off.
THE OUTPUTS MUST NOT BE CONNECTED OR DISCONNECTED WHEN THE UNIT IS POWERED AS THIS WILL DAMAGE THE UNIT.

INSTALLATION:	Terminals $0.5-2.5 \mathrm{~mm}$ rising clamps Screened cable is recommended Keep sensor/control signal wires away from power cables/units which may cause interference.	Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
The screen should be earthed at the controller end only		

WIRING:

Jumpers

OUTPUT LINK:
Select V for vdc output
OFFSET LINK
Select 0-9vdc or 0.4-9.4vdc output adjustable via pot.

MODE LINK:
Select N for normal output

Mode: Normal or Reverse Action :
$N=$ Normal \quad nern $R=$ Reverse

Off $=0$
\square
versions
$\stackrel{\pi}{-1}$

All inputs must be volt free. Screened cable is recommended to eliminate electrical interference.

[^0]
B.M.S INPUT-OUTPUT MODULES 0-10VDC IN 0-135 / 0-1000 OUT

DRN3.1..

WIRING:

DRN3.1..

The jumper settings for S1- S6 are as shown above.
The resistance between terminals B and R will increase as the input signal increases and the resistance between W and R will decrease.

Sensor cable size $7 / 0.2 \mathrm{~mm}$ Screened cable is recommended

Keep away from power cables/units which may cause interference.
The screen should be earthed at the controller OV terminal only.

INPUT-OUTPUT MODULES

B.M.S INPUT-OUTPUT MODULE RAISE / LOWER IN 0-10VDC OUT

*The time it takes for the output to go from 0-10VDC

WIRING:

INSTALLATION:

Terminals $0.5-2.5 \mathrm{~mm}$
Sensor cable size $7 / 0.2 \mathrm{~mm}$
Keep away from power cables/units which may cause interference.
Max length 100 m .
Screened cable is recommended.
The screen should be earthed at the controller OV terminal only.

> TRIAC Jumper
> Position

95

Controller / Triac Output (isolated)

Controller / Triac Output (not isolated)

B.M.S RESISTANCE INPUT MODULE 135/1000』 IN 0-10VDC OUT

DIMENSIONS
ERIM 135R/1K

WIRING:

ERIM 135R/1K

DIMENSIONS

E10-10

EXAMPLES:

E10-10 used with a pressure transmitter ie range $\mathbf{0} \mathbf{- 1 6}$ bar $\& \mathbf{0}-10 \mathrm{vdc}$ output.

A setpoint of 50% represents 8 bar. A prop band of 10% represents 1.6 bar (10% of the range) $\mathrm{J} 4 \& \mathrm{~J} 5$ link on $0-10$.
Therefore the output will be $0-10 \mathrm{vdc}$ linear over the range from 8 bar Ovdc to 9.6 bar 10vdc.
If $\mathrm{J} 4 \& \mathrm{~J} 5$ link is on $10-0$ then the output will be $0-10 \mathrm{vdc}$ linear over the range from 8 bar 0 vdc to 6.4 bar 10 vdc .
E10-10 used with a humidity transmitter ie range $\mathbf{0 - 1 0 0 \%}$ RH \& 0-10vdc output.
A setpoint of 40% represents 40% RH. A prop band of 20% represents 20% RH (20% of the range) J 4 \& J 5 link on 0-10
Therefore the output will be $0-10 \mathrm{vdc}$ linear over the range from 40% RH Ovdc to 60% RH 10vdc.
If J 4 \& J 5 link is on 10-0 then the output will be $0-10 \mathrm{vdc}$ linear over the range from $40 \% \mathrm{RH}$ Ovdc to $20 \% \mathrm{RH} 10 \mathrm{vdc}$.

WIRING:

E10-10

J1 Fit link to interna

J2 To select remote setpoint offset $\pm 5 \%$ or no offset

J3 Select I-V Conv to convert a 4-20mA input signal directly to 0-10VDC Output. The setpoint adj has no effect in this mode.

J4 \& J5 Set both to 0-10 with rising input above the setpoint, the output also rises.
Set both to 10-0 with falling input below the setpoint, the output rises.

J6 \& J7 Set both to 4-20mA or 0-10V to select the input signal

NSTALLATION: Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Screened cable is recommended Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT - OUTPUT MODULES ANALOGUE RESCALING VDC / MA

DIMENSIONS

SETUP :

Factory Calibration

No Attenuation of the Input Signal
Voltage Input
Voltage Output
Normal Acting Output Signal
No Offset to the Output Signa
Gain of 1 to the Output Signal (1:1)

Trim Pots Fully Clockwise

FINE
GAIN = gain of 1
REV $=0$ volts reverse
OFFSET = 0 volts offset

Trim Pots Fully Counter-clockwise
ATTN = no input signal attenuation

The input signal is NOT isolated from the output. When using a 24VAC supply, all devices connected to the ARM must use the same ground. Terminals $0.5-2.5 \mathrm{~mm}$
Min cable size $7 / 0.2 \mathrm{~mm}$. Max length 100 m Keep sensor/control signal wires away from power cables/units which may cause interference. Screened cable is recommended

$0-10 \mathrm{vdc}$ to 5-10VDC

J1 to normal position.
J2 to positive position.
J3 to voltage input, voltage output
Apply Ovdc to the input.
Adjust OFFSET for a 5vdc output.
Apply 10 vdc to the input.
Adjust ATTN for a 10vdc output.
$0-10 \mathrm{VDC}$ to $\mathbf{4 - 2 0 \mathrm { mA }}$
J 1 to normal position. J2 to positive position J3 to voltage input, current output
Apply Ovdc to the input.
Adjust OFFSET for a 4 mA output.
Apply 10 vdc to the input.
Adjust ATTN for a 20 mA output.

4-20mA to 0-10VDC

J1 to normal position. J 2 to negative position. J3 to current input, voltage output. Apply 4 mA to the input. Adjust OFFSET for a Ovdc output.
Apply 20 mA to the input.
Adjust GAIN for a 10 vdc output.

$0-10 \mathrm{VDC}$ to 8-2VDC

J1 to reverse position.
J2 to no offset position.
J3 to voltage input, voltage output.
Apply Ovdc to the input.
Adjust REV for an 8vdc output .
Apply 10 vdc to the input.
Adjust ATTN for a 2 vdc output.

$0-10 \mathrm{VDC}$ to 0-5VDC

J 1 to normal position.
J2 to no offset position.
J3 to voltage input, voltage output.
Apply Ovdc to the input.
Check output is Ovdc.
Apply 10 vdc to the input.
Adjust ATTN for a 5 vdc output.

NOTE : Equivalent Calibration voltage $=$ Required Input Signal Amps $\times 250$ (ie. 4 mA is $0.004 \times 250=1 \mathrm{vdc}$ and 20 mA is $0.020 \times 250=5 \mathrm{vdc}$) Set up the unit with a voltage input and / or output (changing J 3) using the formula. If required change J 3 back to the correct setting.

B.M.S INPUT - OUTPUT MODULES ANALOGUE BUFFER MODULE 0-10VDC

INSTALLATION:

Selecting Inputs -

Selecting Inputs -

Buffering Outputs -

When an output is set to BUFFER the signal is buffered to 20 mA in both HAND and AUTO modes.

When an output is set to DIRECT, the signal is only powered from the pot in HAND mode or the input in AUTO mode.

When the output is set to OFF, the output signal is open circuit.

Hand Mode -

When an input link is set to HAND, the output signal can be set by adjusting the associated pot.

NOTE -

All the Ov terminals are common. There must be only one link used per channel.

Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
The screen must be earthed at controller end only

Max length 100 m . Keep sensor/control signal wires away from power cables/units which may cause interference.
EXAMPLES:

TRANSFORMERS

E230..

Din rail mounting modules used to convert AC and DC voltages.					Max Ambient -10/+50 C Terminals $0.5-2.5 \mathrm{~mm}$ rising clamps Flammability = UL94-V0 If fitting inside an enclosure, ensure adequate ventilation is provided as these units can become hot.		
Type	$\begin{aligned} & \text { Input } \\ & \pm 10 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Output } \\ & \pm 15 \% \\ & \hline \end{aligned}$	Primary Fuse Rating	Secondary Fuse Rating	VA	Mounting	Enclosure
E230-24AC1	230VAC	24VAC	315 mA (T)	1A (T)	25	Din Rail	IP00
E230-24AC2	230VAC	24VAC	315 mA (T)	2A (T)	50	Din Rail	IP00
E230-24AC3	230VAC	24VAC	315 mA (T)	3 A (T)	75	Din Rail	IP00
E230-24DC1	230VAC	24VAC	315 mA (T)	1A (T)	-	Din Rail	IP00

Power supplies with other outputs available to special order

DIMENSIONS
E230..

	W	D
E230-24AC1	113	78
E230-24AC2	113	85
E230-24AC3	130	90
E230-24DC1	113	78

Accessories: EE-M2T Wall mounting enclosure for E230-24AC1. $125 \mathrm{H} \times 125 \mathrm{~W} \times 75 \mathrm{D}$ Protection IP65
This enclosure has no ventilation - therefore do not use on loads above 20VA
DO NOT USE WITH OTHER TRANSFORMERS due to size and ventilation requirements

WIRING:

E230..

[^0]: INSTALLATION: The unit is pre-calibrated, therefore the potentiometer should not require field adjustment of the 0-10vdc signal.
 Total output voltage is equal to the sum of the inputs that are switched ON :-
 E4DIM 0-9vdc Output:
 Input $A=4.8 V \quad B=2.4 V \quad C=1.2 \mathrm{~V} \quad D=0.6 \mathrm{~V} \quad$ If $A+C$ are $O N$ then output $=6 \mathrm{~V}$ if $\mathrm{B}+\mathrm{C}$ are ON then output $=3.6 \mathrm{~V}$
 E4DIM 0.4-9.4vdc Output:
 Input $\quad A=5.2 \mathrm{~V} \quad B=2.8 \mathrm{~V} \quad \mathrm{C}=1.6 \mathrm{~V} \quad \mathrm{D}=1.0 \mathrm{~V} \quad$ If $\mathrm{A}+\mathrm{C}$ are ON then output $=6.8 \mathrm{~V}$ if $\mathrm{B}+\mathrm{C}$ are ON then output $=4.4 \mathrm{~V}$
 E6DIM: Input $\operatorname{IN} 1=0.156 \mathrm{~V} \quad \operatorname{IN} 2=0.313 \mathrm{~V} \quad \mathrm{IN} 3=0.625 \mathrm{~V} \quad \operatorname{IN} 4=1.25 \mathrm{~V} \quad \mathrm{IN} 5=2.5 \mathrm{~V} \quad \mathrm{IN} 6=5 \mathrm{~V}$
 Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
 Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
 Max length 100 m
 The screen should be earthed at controller end only Keep sensor/control signal wires away from power cables/units which may cause interference.

