5. Приложения

5.1 Эквивалентная длина трубопроводов при повороте на 45° и 90°

	Артикул трубы	Радиус изгиба	Эквивален трубопроводов г	тная длина 1ри повороте на:
			90°	45°
		М	М	М
	M7525C	0,20	0,37	0,19
	M9032C	0,25	0,46	0,23
	M16040C	0,35	0,68	0,34
	M16050C	0,45	0,83	0,42
	M16063C	0,55	0,99	0,49
	M20075C	0,80	1,41	0,71
Standard	M20090C	1,10	1,88	0,94
Stan	M200110C	1,20	2,04	1,02
	M200125C	1,40	2,36	1,18
	MD16025C	0,50	0,91	0,46
	MD16032C	0,50	0,91	0,46
	MD16040C	0,60	1,07	0,53
	MD20050C	0,80	1,41	0,71
	MD20063C	1,20	2,04	1,02
	M9040C	0,30	0,54	0,27
	M12540C	0,30	0,57	0,28
	M12550C	0,40	0,73	0,36
	M12563C	0,50	0,88	0,44
Primo	M16075C	0,75	1,30	0,65
	M16090C	1,00	1,70	0,85
	MD12525C	0,30	0,57	0,28
	MD12532C	0,30	0,57	0,28
	MD16050C	0,60	1,07	0,53

5.2 Объем воды в напорной трубе

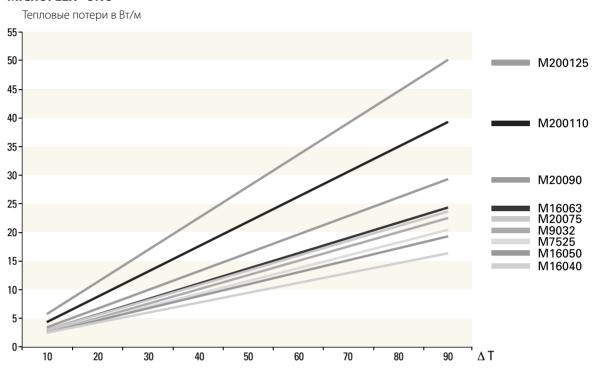
Microflex PE-Ха для									
	отопления PN 6 - SDR 11								
Ø трубы/толщина стенки мм	Ø трубы мм	Емкость л/м							
25/2,3	25	0,327							
32/2,9	32	0,539							
40/3,7	40	0,835							
50/4,6	50	1,307							
63/5,8	63	2,075							
75/6,8	75	2,961							
90/8,2	90	4,254							
110/10,0	110	6,362							
125/11,4	125	8,203							

Microflex PE-Ха для								
водоснабжения PN 10 - SDR 7.4								
Ø трубы/толщина стенки мм	Ø трубы мм	Емкость л/м						
20/2,8	20	0,163						
25/3,5	25	0,254						
32/4,4	32	0,423						
40/5,5	40	0,660						
50/6,9	50	1,029						
63/8,7	63	1,633						

5.3 Определение необходимой тепловой мощности от источника тепла (котла)

Необходимая мощность источника теплоты рассчитывается в зависимости от требуемой мощности и потерь тепла в сети. Для расчета потерь тепла, нужно принимать во внимание следующие факторы:

– λ изоляции: 0,040 вт/мК при 40 °С


- λ грунта: 1 Вт/мК
- λ трубы РЕ-Ха: 0.35 Вт/мК
- Толщина грунта поверх трубы: 80 см

В разделах 5.4-5.7 таблицы потерь тепла / графики для различных трубопроводов (Uno, Uno Primo, Duo и Duo Primo). Эти таблицы показывают различные диаметры, доступные для труб и перекрестные ссылки на ΔT (разница температуры потока и температуры грунта). Путем сравнения известного размера трубы (с известной температурой носителя) и зная местную температуру грунта, колонка ΔT показывает потери тепла в трубе на метр. Умножив эту потерю тепла на метр общей длины трубы, вы вычислите полные потери тепла для всей трассы.

5.4 Графики тепловых потерь для трубопроводов Microflex UNO

MICROFLEX® UNO

MICROFLEX® UNO PRIMO

Тепловые потери в Вт/м 45 40 M16090 35 M12563 30 M16075 M9040 25 M12550 M12540 20 15 10-5 10 20 30 70 ΔT 40 50 60

Для UNO $\Delta T = T_v - T_o$ $T_v : Температура потока <math display="block">T_o : Температура грунта$

Используя приведенные выше графики, потери тепла на метр могут быть рассчитаны для известной разницы температур (ΔT) между напорной трубой и температурой грунта.

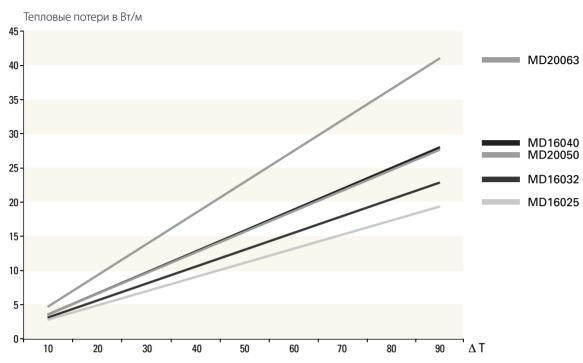
5.5 Таблицы для трубопроводов Microflex UNO

Ниже таблицы для UNO труб.

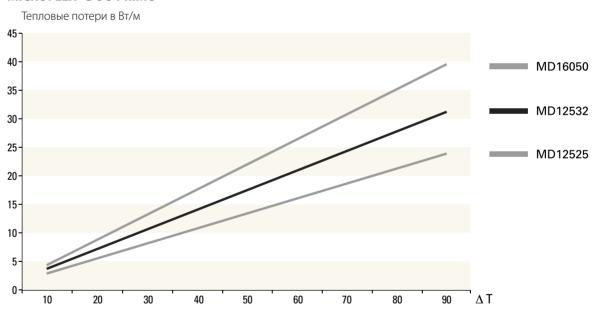
Примечание: значение температуры отображается над разными столбцами, дающими температурный дифференциал (ΔT) между температурой грунта и температуры трубы.

U, общий коэффициент теплопроводности
0,552
0,431
0,321
0,270
0,260
0,246
0,228
0,216
0,182

Тепловые потери для труб Microflex UNO, Вт/м									
∆Т / Труба	10°	20°	30°	40°	50°	60°	70°	80°	90°
M200125	5,520	11,040	16,560	22,080	27,600	33,120	38,640	44,160	49,680
M200110	4,310	8,620	12,930	17,240	21,550	25,860	30,170	34,480	38,790
M20090	3,210	6,420	9,630	12,840	16,050	19,260	22,470	25,680	28,890
M16063	2,700	5,400	8,100	10,800	13,500	16,200	18,900	21,600	24,300
M20075	2,600	5,200	7,800	10,400	13,000	15,600	18,200	20,800	23,400
M9032	2,460	4,920	7,380	9,840	12,300	14,760	17,220	19,680	22,140
M7525	2,280	4,560	6,840	9,120	11,400	13,680	15,960	18,240	20,520
M16050	2,160	4,320	6,480	8,640	10,800	12,960	15,120	17,280	19,440
M16040	1,820	3,640	5,460	7,280	9,100	10,920	12,740	14,560	16,380


U, общий коэффициент теплопроводности
0,439
0,371
0,333
0,314
0,277
0,222

	Тепловые потери для труб Microflex PRIMO UNO, Вт/м								
∆Т / Труба	10°	20°	30°	40°	50°	60°	70°	80°	90°
M16090	4,390	8,780	13,170	17,560	21,950	26,340	30,730	35,120	39,510
M12563	3,710	7,420	11,130	14,840	18,550	22,260	25,970	29,680	33,390
M16075	3,330	6,660	9,990	13,320	16,650	19,980	23,310	26,640	29,970
M9040	3,140	6,280	9,420	12,560	15,700	18,840	21,980	25,120	28,260
M12550	2,770	5,540	8,310	11,080	13,850	16,620	19,390	22,160	24,930
M12540	2,220	4,440	6,660	8,880	11,100	13,320	15,540	17,760	19,980



5.6 Графики тепловых потерь для трубопроводов Microflex DUO

MICROFLEX® DUO

MICROFLEX® DUO PRIMO

Для DUO

$$\Delta T = \frac{(I_v + I_r)}{2} - T_c$$

Т,: Температура потока

Т_r: Температура возврата

Т_о: Температура грунта

5.7 Таблицы для трубопроводов Microflex DUO

Ниже таблицы для DUO труб.

Примечание: значение температуры отображается над разными столбцами, дающими температурный дифференциал (ΔT) между температурой грунта и температурой воды (среднее между температурой подачи и температуры возврата).

U, общий коэффициент теплопроводности
0,456
0,316
0,310
0,253
0,210

Тепловые потери для труб Microflex DUO, Вт/м									
∆Т / Труба	10°	20°	30°	40°	50°	60°	70°	80°	90°
MD20063	4,560	9,120	13,680	18,240	22,800	27,360	31,920	36,480	41,040
MD16040	3,160	6,320	9,480	12,640	15,800	18,960	22,120	25,280	28,440
MD20050	3,100	6,200	9,300	12,400	15,500	18,600	21,700	24,800	27,900
MD16032	2,530	5,060	7,590	10,120	12,650	15,180	17,710	20,240	22,770
MD16025	2,100	4,200	6,300	8,400	10,500	12,600	14,700	16,800	18,900

U, общий коэффициент теплопроводности
0,442
0,343
0,265

Тепловые потери для труб Microflex PRIMO DUO, Вт/м									
∆Т∕Труба	10°	20°	30°	40°	50°	60°	70°	80°	90°
MD16050	4,420	8,840	13,260	17,680	22,100	26,520	30,940	35,360	39,780
MD12532	3,430	6,860	10,290	13,720	17,150	20,580	24,010	27,440	30,870
MD12525	2,650	5,300	7,950	10,600	13,250	15,900	18,550	21,200	23,850

5.8 Таблицы потерь давления

Тепловая мощность в кВт, рассчитанная для ΔТ 20°C

Шероховатость трубы: 0,007 мм

Плотность воды: 0,97190 г/см³

Температура воды: 80 °C

25 × 2,3 32 × 2,9 40 × 3,7	
л/с	R Δt: 20 °C
	/м кВт 0 11 12
	- 0,100 8,373,6
	- 0,150 12,560,4
0,040 3,349,4 0,12 12,3	- 0,200 16,747,2
	0,250 20,934,0
0,050 4,186,8 0,16 18,2 0,09 5,5 -	0,300 25,120,8
0,055 4,605,5 0,17 21,5 0,10 6,5 -	0,350 29,307,6
0,060 5,024,1 0,18 25,0 0,11 7,6 -	0,400 33,494,4
	0,450 37,681,2
0,070 5,861,5 0,21 32,7 0,13 9,9 -	0,500 41,868,0
0,075 6,280,2 0,23 36,9 0,14 11,2 0,09 4	,0 0,550 46,054,8
0,080 6,698,9 0,24 41,4 0,15 12,5 0,10 4	,4 0,600 50,241,6
0,085 7,117,5 0,26 46,0 0,16 13,9 0,10 4	,9 0,650 54,428,4
0,090 7,536,2 0,28 50,9 0,17 15,4 0,11 5	i,4 0,700 58,615,2
0,095 7,954,0 0,29 56,0 0,18 16,9 0,11	6,0 0,750 62,802,0
0,100 8,373,6 0,31 61,4 0,19 18,5 0,12 6	5,5 0,800 66,988,8
0,120 10,048,3 0,37 84,8 0,22 25,6 0,14 9	9,0 0,850 71,175,6
0,140 11,723,0 0,43 111,5 0,26 33,6 0,17 11	,8 0,900 75,362,4
0,160 13,397,7 0,49 141,6 0,30 42,5 0,19 14	,9 0,950 79,549,2
0,180 15,072,4 0,55 174,9 0,33 52,4 0,22 18	3,4 1,000 83,736,0
0,200 16,747,0 0,61 211,3 0,37 63,2 0,24 22	1,050 87,922,8
0,220 18,421,9 0,67 250,9 0,41 74,9 0,26 26	
0,240 20,096,6 0,73 239,5 0,45 87,5 0,29 30	
0,260 21,771,3 0,80 339,3 0,48 101,0 0,31 35	
0,280 23,446,0 0,86 388,1 0,52 115,4 0,34 40	
0,300 25,120,8 0,92 439,9 0,56 130,7 0,36 45	
0,320 26,795,5 0,98 494,7 0,59 146,8 0,38 51	
0,340 28,470,2 1,04 552,4 0,63 163,7 0,41 57	
0,360 30,144,9 1,10 613,2 0,67 181,5 0,43 63	
0,380 31,819,6 1,16 676,9 0,70 200,2 0,46 69	
0,400 33,494,4 1,22 743,5 0,74 219,6 0,48 76	
0,420 35,169,1 1,28 813,1 0,78 240,0 0,50 83	
0,440 36,843,8 1,35 885,6 0,82 261,1 0,53 90	
0,460 38,518,5 1,41 961,0 0,85 283,1 0,55 98 0,480 40,193,2 1,47 1,039,3 0,89 305,8 0,58 105,	
0,480 40,193,2 1,47 1,039,3 0,89 305,8 0,58 105, 0,500 41,868,0 1,53 1,120,5 0,93 329,4 0,60 114,	
0,550 46,054,8 1,68 1,336,0 1,02 392,0 0,66 135 ,	
0,550 4-0,054,6 1,60 1,550,0 1,02 352,0 0,00 155,0 0,600 50,241,6 1,84 1,569,5 1,11 459,6 0,72 158	
0,650 54,428,4 1,99 1,820,8 1,21 532,2 0,78 183	
0,700 58,615,2 1,30 609,8 0,84 209	
0,750 62,802,0 1,39 692,3 0,90 237	
0,800 66,988,8 1,48 779,8 0,96 267	
0,850 71,175,6 1,58 872,2 1,02 299	
0,900 75,362,4 1,67 969,4 1,08 332	
0,950 79,549,2 1,76 1,071,5 1,14 366	
1,000 83,736,0 1,85 1,178,5 1,20 402	
1,050 87,922,8 1,95 1,290,3 1,26 440	,,6 2,900 242,834,4
1,100 92,109,6 2,04 1,406,9 1,32 480),0 3,000 251,208,0
1,150 96,296,4 1,38 521	
1,200 100,483,2 1,44 563	3,200 267,955,2
1,250 104,670,0 1,50 607	7,6 3,300 276,328,8
1,300 108,856,8 1,56 653	3,400 284,702,4
1,350 113,043,6 1,62 700),6 3,500 293,076,0
1,400 117,230,4 1,68 749	9,4 3,600 301,449,6
1,450 121,417,2 1,74 799	9,8 3,700 309,823,2
1,500 125,604,0 1,80 851	
1,550 129,790,8 1,86 905	
1,600 133,977,6 1,92 960	
1,650 138,164,4 1,98 1,016	
1,700 142,351,2 2,04 1,075	i,0 4,200 351,691,2

Труба из сшитого ПЭ						Труба из сшитого ПЭ						Т	руба из с	шитого	ПЭ
50 :	× 4,6	63 :	× 5,8			75×6.8		90	× 8.2			110×10		125 × 11.4	
V м/с	R Па/м	V M/c	R Па/м	л/с	∆t: 20°С кВт	V м/с	R Па/м	V м/с	R Па/м	л/с	∆t: 20°С кВт	V m/c	R Па/м	V м/с	R Па/м
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
0,08	2,3	0,05	0,7	0,30	25,116	0,10	2,2	0,07	0,9	0,40	33,488	0,06	0,6	-	-
0,11	4,6	0,07	1,5	0,35	29,302	0,12	2,9	0,08	1,2	0,50	41,860	0,08	0,9	-	-
0,15	7,6	0,10	2,5	0,40	33,488	0,14	3,7	0,09	1,5	0,60	50,233	0,09	1,2	-	-
0,19	11,2	0,12	3,7	0,45	37,674	0,15	4,5	0,11	1,9	0,70	58,605	0,11	1,6	-	-
0,23	15,5	0,14	5,0	0,50	41,860	0,17	5,4	0,12	2,3	0,80	66,977	0,13	2,0	-	-
0,27	20,4	0,17	6,6	0,55	46,047	0,19	6,4	0,13	2,7	0,90	75,349	0,14	2,5	-	-
0,31	25,9	0,19	8,4	0,60	50,233	0,20	7,5	0,14	3,1	1,00	83,721	0,16	3,0	-	-
0,34 0,38	31,9 38,6	0,22	10,3 12,5	0,65 0,70	54,419 58,605	0,22 0,24	8,6 9,9	0,15 0,16	3,6 4,1	1,20 1,40	100,465 117,209	0,19	4,1 5,4	-	-
0,42	45,8	0,24	14,8	0,75	62,791	0,25	11,2	0,18	4,7	1,60	133,953	0,25	6,9	-	-
0,46	53,5	0,29	17,3	0,80	66,977	0,27	12,5	0,19	5,2	1,80	150,698	0,28	8,5	-	-
0,50	61,8	0,31	19,9	0,85	71,163	0,29	14,0	0,20	5,8	2,00	167,442	0,31	10,3	-	-
0,54	70,7	0,33	22,8	0,90	75,349	0,30	15,5	0,21	6,5	2,40	200,930	0,38	14,3	-	-
0,57	80,1	0,36	25,8	0,95	79,535	0,32	17,0	0,22	7,1	2,80	234,419	0,44	18,9	-	-
0,61	90,0	0,38	28,9	1,00	83,721	0,34	18,7	0,24	7,8	3,20	267,907	0,50	24,1	-	-
0,65	100,4	0,41	32,3	1,05	87,907	0,35	20,4	0,25	8,5	3,60	301,395	0,57	29,8	-	-
0,69	111,4	0,43	35,8	1,10	92,093	0,37	22,2	0,26	9,3	4,00	334,884	0,63	36,2	-	-
0,73	122,9	0,45	39,4	1,15	96,279	0,39	24,0	0,27	10,0	4,40	368,372	0,69	43,0	0,55	25,0
0,76	134,9	0,48	43,2	1,20	100,465	0,41	25,9	0,28	10,8	4,80	401,860	0,75	50,5	0,58	28,0
0,80 0,84	147,4 160,5	0,50 0,53	47,2 51,4	1,30 1,40	108,837 117,209	0,44 0,47	30,0 34,3	0,31	12,5 14,3	5,20 5,60	435,349 468,837	0,82	58,4 66,9	0,62	33,0 39,0
0,88	174,0	0,55	55,7	1,50	125,581	0,51	38,8	0,35	16,2	6,00	502,326	0,94	76,0	0,73	42,0
0,92	188,1	0,57	60,1	1,60	133,953	0,54	43,6	0,38	18,2	6,40	535,814	1,01	85,6	0,75	46,0
0,96	202,7	0,60	64,7	1,70	142,326	0,57	48,7	0,40	20,3	6,80	569,302	1,07	95,7	0,84	53,0
0,99	217,8	0,62	69,5	1,80	150,698	0,61	54,0	0,42	22,5	7,20	602,791	1,13	106,3	0,87	58,0
1,03	233,4	0,65	74,4	1,90	159,070	0,64	59,6	0,45	24,8	7,50	627,907	1,18	114,6	0,91	62,0
1,07	249,5	0,67	79,5	2,00	167,442	0,68	65,4	0,47	27,2	8,00	669,767	1,26	129,2	0,98	71,0
1,11 1,15	266,1 283,2	0,69 0,72	84,8 90,2	2,10 2,20	175,814 184,186	0,71 0,74	71,5	0,49	29,7 32,3	8,40 8,80	703,256 736,744	1,32 1,38	141,4 154,1	1,02 1,08	75,0 83,0
1,19	300,8	0,72	95,7	2,20	192,558	0,74	77,9 84,4	0,54	35,0	9,20	770,233	1,45	167,4	1,13	90,0
1,22	318,8	0,77	101,4	2,40	200,930	0,81	91,3	0,56	37,9	9,40	786,977	1,48	174,2	1,15	93,0
1,26	337,4	0,79	107,3	2,50	209,302	0,84	98,3	0,59	40,8	9,60	803,721	1,51	181,1	1,17	96,0
1,30	356,5	0,81	113,3	2,60	217,674	0,88	105,7	0,61	43,8	9,80	820,465	1,54	188,2	1,20	101,0
1,34	376,1	0,84	119,4	2,70	226,047	0,91	113,2	0,63	46,9	10,00	837,209	1,57	195,4	1,24	106,0
1,38	396,2	0,86	125,8	2,80	234,419	0,95	121,0	0,66	50,1	10,50	879,070	1,65	214,0	1,29	114,0
1,45 1,53	437,8 481,3	0,91 0,96	138,8 152,5	2,90 3,00	242,791 251,163	0,98 1,01	129,1 137,4	0,68 0,71	53,4 56,8	11,00 11,50	920,930 962,791	1,73 1,81	233,4 253,5	1,34 1,40	123,0 132,0
1,61	526,9	1,00	166,8	3,20	267,907	1,01	154,7	0,71	63,9	12,00	1,004,651	1,89	274,5	1,46	141,0
1,68	574,3	1,05	181,6	3,40	284,651	1,15	172,9	0,80	71,4	12,50	1,046,512	1,96	296,3	1,53	154,0
1,76	623,8	1,10	197,1	3,60	301,395	1,22	192,2	0,85	79,3	13,00	1,088,372	2,04	318,8	1,60	166,0
1,84	675,1	1,15	213,1	3,80	318,140	1,28	212,3	0,89	87,6	13,50	1,130,233	2,12	342,2	1,65	177,0
1,91	728,4	1,20	229,8	4,00	334,884	1,35	233,4	0,94	96,2	14,00	1,172,093	2,20	366,3	1,71	187,0
1,99	783,6	1,24	247,0	4,20	351,628	1,42	255,5	0,99	105,3	14,50	1,213,953	2,28	391,2	1,77	197,0
-	-	1,29 1,34	264,8 283,2	4,40 4,60	368,372 385,116	1,49 1,55	278,5 302,4	1,03 1,08	114,7 124,4	15,00 15,50	1,255,814 1,297,674	2,36 2,44	416,9 443,4	1,82 1,89	208,0 223,0
-	-	1,34	302,2	4,80	401,860	1,62	302,4	1,13	134,6	16,00	1,339,535	2,44	470,7	1,89	238,0
-	-	1,43	321,8	5,00	418,605	1,69	353,1	1,18	145,1	16,50	1,381,395	2,59	498,8	2,00	251,0
-	-	1,48	341,9	5,20	435,349	1,76	379,8	1,22	156,0	17,00	1,423,256	2,67	527,6	2,04	264,0
-	-	1,53	362,6	5,40	452,093	1,82	407,5	1,27	167,3	17,50	1,465,116	2,75	557,2	2,11	275,0
-	-	1,58	383,9	5,60	468,837	1,89	436,1	1,32	178,9	18,00	1,506,977	2,83	587,7	2,18	286,0
-	-	1,63	405,8	5,80	485,581	1,96	465,6	1,36	190,9	18,50	1,548,838	2,91	618,8	-	-
-	-	1,67	428,2	6,00	502,326	2,03	496,0	1,41	203,3	19,00	1,590,698	2,99	650,8	-	-
-	-	1,72	451,2	6,20	519,070	2,09	527,4	1,46	216,0	19,50	1,632,558	3,07	683,6	-	-
-	-	1,77 1,82	474,8 498,9	6,40 6,60	535,814 552,558	2,16 2,23	559,6 592,8	1,50 1,55	229,1 242,6	20,00	1,674,419 1,716,279	3,14	717,1 751,4	-	-
-	-	1,86	523,7	6,80	569,302	2,23	626,9	1,60	256,5	21,00	1,710,279	3,30	786,5	-	-
-	-	1,91	549,0	7,00	586,047	2,36	661,9	1,65	270,7	21,50	1,800,000	3,38	822,3	-	-
-	-	1,96	574,8	7,20	602,791	2,43	697,9	1,69	285,2	22,00	1,841,860	3,46	858,9	-	-
		/	601,3	,	619,535	2,50	734,7	1,74	300,2	22,50	1,883,721	-7.0	,-		

Превращение единиц: 1 кВт = 0,860 ккал

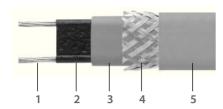
5.9 Стойкость к химическим воздействиям: трубы PE-Xa

Большинство химических веществ не оказывают никакого влияния на трубу, даже при повышенных температурах. Как правило, пластмассы, которые подвергаются воздействию химических веществ, подвержены к физическим изменениям их свойств, таких как, набухание или растворение. Из-за химического связывания полимерных цепей, РЕ-Ха трубы (поперечно-сшитый ПЭ) являются более устойчивыми в этом отношении, чем трубы из не сшитого полиэтилена. Для того, чтобы определить устойчивость к различным материалам контролировались изменения характеристик на разрыв и удлинение. В системе трубопроводов под давлением сопротивление неизвестным химических веществам в целом не может быть экстраполировано из опыта известных химических веществ. Для этого требуются испытания на прочность с неизвестными химическими веществами в испытательном трубопроводе.

Обозначения

- А = устойчивы
- В = устойчивы при рабочем давлении
- С = устойчивы при 60% от рабочего давления
- D = устойчивы при 20% рабочего давления
- U = непригодны

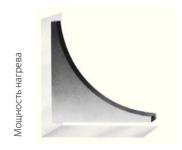
Вещество	40 °C	60 °C	80 °C	Вещество	40 °C	60 °C	80 °C	Вещество	40 °C	60 °C	80 °C
Уксусная кислота	А	А		Дихлорбензол	С	U		Олеум	U		
Ацетон	C			Дихлорэтан	U			Озон	C		U
Акрилонитрил	Α	Α	Α	Солярка	Α	В	C	Парафин	Α	В	C
Аллил спирта	Α			Эфир Диэтиловый	C	D	U	Керосин	Α	Α	Α
Хлорид алюминия	Α	Α	Α	Сложноэфирные масла	В	В	В	Перхлорэтилен	U		
Сульфат алюминия	Α	Α	Α	Эфиры	C	D	U	Нефть	Α	В	C
Аммиак, водный раствор	Α	Α	Α	Этилацетат	Α	В	C	Петролейный эфир	Α	D	
Хлористый аммоний	Α	Α	Α	Этиловый спирт	Α	Α	Α	Фенолы 100%	D		
Сульфат аммония	Α	Α	Α	Этиленгликоля	Α	Α	Α	(Карболовой кислоты)			
Анилин, чистый	Α	Α		Фторбензол	U			Фосфаты	Α	Α	Α
Царская водка	U	Α	Α	Формальдегид, 40 %	Α	Α		Фосфорная кислота, 95 %	Α	Α	
Щавелевая кислота	Α	В		Муравьиная кислота	Α	Α	В	Фталевой кислоты, 50 %	Α	Α	Α
Пиво	Α			Фреон	U			Полигликоли	Α	Α	
Бензойная кислота	Α	Α	В	Топливные масла	Α	D		Хлорид калия	Α	Α	Α
Бензол сульфокислота	U	Α	Α	Бензин, чистый	В	C		Хромат калия, 40 %	Α	Α	Α
Битум	A	C	Α	Глицерин	Α	Α	Α	Гидроксид калия, 50 %	Α	Α	Α
Хлорная известь	D	U	Α	Гликоль, 10 %	Α	Α		Перманганат калия, 18 %	Α	Α	Α
Бром	U	C		Гексан	C	D		Пропанол	Α	Α	Α
Бутандиол	В	A	Α	Хлористоводородная				Пропионовая кислота,	Α	Α	Α
Бутанол	A	Α	Α	кислота, 30%	Α			50%			
Масло	Α		В	Соляная кислота, 10 %	Α	Α	Α	Пиридин	Α	В	C
Масло кислота	C	D		Перекись водорода, 100 %	Α	U		Силиконовые масла	Α	Α	Α
Бутилацетат	A	В	C	Перекись водорода, 30 %	Α	Α	Α	Мыльный раствор	Α	Α	Α
Углекислый газ	Α	A	_	Сероводород	Α			Натрия гидроокись Con.	Α	Α	
Хлор водонасыщенный	Α		В	Йод настойка	Α	C		Гипохлорита натрия	В		
Хлор, сухой газ	В		U	Олифа	Α	В	C	Раствор	_		
Хлор, жидкость	U			Соли магния	Α	Α		Стирол	C	U	
Хлороформ	D	U		Малеиновая кислота	Α	Α	Α	Сера раствор	A		
Хромовая кислота, 50 %	A	A	Α	Ртуть	Α	Α	Α	Серная кислота, до 50 %	A	Α	Α
Смесь бихромата калия				Метиловый спирт	Α	Α	Α	Серная кислота, до 98 %	U		
и серной кислоты	Α	U		Метилэтилкетон	В	D		Тетрахлорид Этан	D	U	
Лимонная кислота	Α			Метиленхлорид	C	U		Тетрагидрофуран	U		
Рыбий жир	В	C		Молоко	Α	Α	Α	Тетралин	В	U	
Крезол	Α	C		Моторные масла			C	Толуол	D	U	_
Циклогексан	C	D		Нафта	В	U		Трансформаторные Масла	A	C	D
Циклогексанол	Α			Нафталин	Α	C		Трихлорэтилен	U		
Циклогексанон	D	U		Азотная кислота, 30 %	Α	Α		Скипидар	D	U	
Декагидро нафталин	В	C		Азотная кислота, 50 %	В	C		Вазелин	A	В	C
Моющие средства	Α	В		Нитробензол	C	U		Вода	Α	Α	Α
Дибутилэфир	В	D		Масло	C	C		Вино	Α	Α	Α
Дибутилфталат	В	C	С	Масло, содержащее кислоты			C	Ксилол	С		U



5.10 Таблица тепловых потерь для обогреваемых труб холодного водоснабжения

В данной таблице приведены потери тепла при отрицательных температурах вокруг внешнего кожуха трубопровода. При превышении тепловых потерь 9 Вт/м (для кабеля номинальной мощностью 10 Вт/м) или 17 Вт/м (для кабеля номинальной мощностью 18 Вт/м) труба может находиться под угрозой замерзания.

	жный кожух / /бы, мм	75/32	90/40	125/50	125/63	160/75	160/90	200/110	200/125
	цина пяции	15,5 мм	17,5 мм	28 мм	21,5 мм	31,5 мм	24 мм	31 мм	23,5 мм
- ex	-1	1	1	1	1	1	1	1	1
температура вокруг кожуха	-2	1	1	1	2	2	2	2	2
Ϋ́	-3	1	2	2	2	2	3	2	2
окр	-4	2	2	2	3	2	3	2	3
оа в	-5	2	2	2	3	3	4	3	3
атуј	-6	2	3	3	3	3	4	3	4
пер	-7	2	3	3	4	3	5	4	4
TeM	-8	3	4	3	4	4	5	4	5
	-9 10	3	4	4	5	4 5	6	5	5
	-10 -11	3 4	4 5	4	5 6	5	7	5 6	6 7
	-11	4	5	5	6	5	7	6	7
	-13	4	5	5	7	6	8	7	8
	-14	5	6	5	7	6	8	7	8
	-15	5	6	6	7	6	9	7	9
	-16	5	6	6	8	7	9	8	9
	-17	5	7	6	8	7	10	8	10
	-18	6	7	6	9	8	10	9	10
	-19	6	8	7	9	8	10	9	11
	-20	6	8	7	9	8	11	10	11
	-21	7	8	7	10	9	11	10	12
	-22	7	9	8	10	9	12	10	13
	-23	7	9	8	11	9	12	11	13
	-24	8	9	8	11	10	13	11	14
	-25	8	10	9	12	10	13	12	14
	-26 27	8	10	9	12	10	14	12	15
	-27 -28	8	10 11	9	12 13	11 11	14 15	13 13	15 16
	-29	9	11	10	13	12	15	14	16
	-30	9	11	10	14	12	16	14	17
	-31	10	12	10	14	12	16	15	18
	-32	10	12	11	14	13	17	15	18
	-33	10	12	11	15	13	17	15	19
	-34	10	13	11	15	13	18	16	19
	-35	11	13	12	16	14	18	16	20
	-36	11	13	12	16	14	18	17	20
	-37	11	14	12	16	14	19	17	21
	-38	12	14	13	17	15	19	18	21
_	-39	12	14	13	17	15	20	18	22
В	-40	12	15	13	18	15	20	18	22
тур	-41	13	15	13	18	16	21	19	23
ере	-42 -43	13 13	15 16	14 14	18 19	16 16	21	19 20	24 24
темг	-43 -44	13	16	14	19	17	22 22	20	25
лая	-44	14	16	15	19	17	23	21	25
дуел	-46	14	17	15	20	17	23	21	26
мен	-47	14	17	15	20	18	23	22	26
еког	-48	15	17	15	21	18	24	22	27
Не рекомендуемая температура	-49	15	17	16	21	18	24	23	27
_	-50	15	18	16	21	19	25	23	28



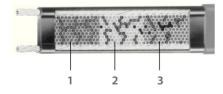

- 1 Медный проводник с оловянным покрытием
- 2 Саморегулирующийся нагревательный элемент
- 3 Кожух электрической изоляции
- 4 Безопасный кожух из переплетённой меди с оловянным покрытиемг
- 5 Наружная безопасная оболочка

Схема цепи

Температура окружающей среды

- 1 В холодных секциях нагревательного кабеля частицы пластика будут сближаться, создавая большое количество электрических токов в частицах углерода. Этот ток превращается в тепло в нагревательном элементе.
- 2 В более тёплых участках структура пластика расширяется и постепенно прерывает токи в частицах углерода. При этом увеличивается сопротивление и снижается поглошение тока, и таким образом – мощность нагрева.
- 3 В горячих секциях расширение структуры пластика почти полностью прерывает токи. При этом создаётся очень высокое электросопротивление и мошность нагрева палает почти до 0.

5.11 Саморегулирующийся нагревательный кабель – структура и эксплуатация

Надёжная конструкция

Этот нагревательный кабель является саморегулирующимся с двумя параллельными многожильными медными проводниками с оловянным покрытием и с промежуточным полупроводниковым нагревательным элементом. Этот нагревательный элемент электрически изолирован с помощью синтетической оболочки из олефина или фторполимера. Он так же покрыт кордной тканью из переплетённой меди с оловянным покрытием. Эта плетевидная структура обеспечивает заземление (безопасный проводник) для нагревательного кабеля, которое соответствует существующему стандарту по технике безопасности (VDE 0100), и снабжена дополнительной механической защитой.

Подтверждённый срок эксплуатации

Эти саморегулирующиеся нагревательные кабели детально испытывались в наших лабораториях с применением испытаний по международным стандартам и признанных научных методов и процедур. В результате этих испытаний было определено, что срок эксплуатации данного саморегулирующегося кабеля превышает 40 лет.

Лицензии

Все саморегулирующиеся нагревательные кабели изготавливаются в соответствии с самыми жёсткими нормативами качества, и для них постоянно проводятся проверки качества. Они прошли аттестацию Общества немецких электриков (VDE) и также имеют разнообразные лицензии по производству, контролю и другим вопросам от многих стран.

Схемы с параллельным включением

Ток проходит между двумя параллельными медными проводниками, независимо от того, где находится нагревательный кабель, и - прямо через полупроводниковый, очищенный на молекулярном уровне нагревательный элемент. Принципиальная электрическая схема аналогична схеме с параллельным включением для множества сопротивлений, зависящих от температуры. Простая конструкция системы и ещё более простой процесс монтажа обеспечат вам значительную экономию средств. Нагревательный кабель всегда подсоединяется к сети с напряжением 230 вольт, независимо от его длины.

Эксплуатация

Нагревательный элемент состоит из специально изготовленного, очищенного на молекулярном уровне пластмассового кожуха с включёнными частицами углерода, которые генерируют электрические токи между двумя параллельными медными проводниками. Когда температура повышается, пластмасса увеличивается в объёме из-за молекулярного расширения. Частицы углерода расходятся всё дальше и дальше друг от друга, что приводит к прерыванию электрических токов и повышению электросопротивления в нагревательном элементе. Поглощение тока и нагревательная способность падают пропорционально. Когда элемент охлаждается, происходит обратный процесс и нагревательная способность возрастает как реакция на низкие температуры. Очистка нагревательного элемента на молекулярном уровне придаёт ему свойства термореактивного пластика, обеспечивая полную воспроизводимость на молекулярном уровне для способности расширяться даже при колебаниях температур. Саморегулирующиеся даже при колебаниях температур. Саморегулирующаяся система свойства нагревательного кабеля являются частью самого материала. Благодаря саморегуляции, нагревательный кабель реагирует на колебания по всей длине системы.

Сохранение энергии

Поскольку нагревательная способность регулируется в зависимости от температуры окружающей среды, сохранение энергии всегда сообразуется с существующими требованиями. Следовательно, нагревательные кабели экономят энергию и затраты за счёт саморегуляции.

Безопасная и надёжная

Благодаря этим свойствам саморегуляции, система не может перегреться или перегореть даже при взаимоналожении нагревательного кабеля.

5.12 Таблицы перевода единиц различных систем

Перевод единиц энергии											
Единица	Дж	МДж	кВт-час	МВт-час	ккал	Мкал	кг SKE	BTU			
1 Дж = 1 Нм = 1 Вт сек	1	10 ⁻⁶	$0,278 \times 10^{-6}$	0,278 × 10 ⁻⁹	0,239×10 ⁻³	0,239 × 10 ⁻⁶	0,034 × 10 ⁻⁶	948 × 10 ⁻⁶			
1 МДж = 10 ⁶ Дж	10 ⁻⁶	1	0,278	0,278 × 10 ⁻³	239	0,239	0,034	948			
1 кВт-час	$3,6 \times 10^{6}$	3,6	1	10 ⁻³	860	0,86	0,123	3412			
1 МВт-час	$3,6 \times 10^9$	3600	1000	1	860×10^{3}	860	123	3,412			
1 ккал	4187	4,187 × 10 ⁻³	1,163×10 ⁻³	1,163 × 10 ⁻⁶	1	0,001	1,43 × 10 ⁻⁴	3,968			
1 Мкал	4,187 × 10 ⁶	4,187	1,163	1,163 × 10 ⁻³	1000	1	0,143	3,968			
1 кг SKE	29,31 × 10 ⁶	29,31	8,14	8,14 × 10 ⁻³	7000	7	1	27.8×10^{3}			
1 BTU	1,05×10 ³	1,05×10 ⁻³	29,31×10 ⁻³	0,293	0,252	2,52 × 10 ⁻⁴	3,603 × 10 ⁻⁵	1			

Перевод единиц давления											
Единица	Н/м² Па	кПа	бар	мбар	мм водного столба	атм	Торр	фунт/дюйм²			
$1 \Pi a = 1 H/M^2$	1	0,001	10-5	0,01	0,102	0,987 × 10 ⁻⁵	0.75×10^{-2}	1,45 × 10 ⁻⁴			
1 кПа	1000	1	0,01	10	102	0,987 × 10 ⁻²	7,5	0,145			
1 бар	10⁵	100	1	1000	1,02×10 ⁴	0,987	750	14,50			
1 мбар	100	0,1	0,001	1	10,2	0,987 × 10 ⁻³	0,75	1,45 × 10 ⁻²			
1 мм водного столба = 1 kgf/см²	9,81	9,81 × 10 ⁻³	9,81 × 10 ⁻⁵	9,81 × 10 ⁻²	1	0,968 × 10 ⁻⁴	0,074	1,42 × 10 ⁻³			
1 атм	1,01 × 10 ⁻⁵	101	1,01	1010	10332	1	760	14,7			
1 Торр = 1 мм ртутного столба	133	0,133	1,33 × 10 ⁻³	1,33	13,6	1,36 × 10 ⁻³	1	0,019			
фунт/дюйм² = 1 psi	$6,89 \times 10^3$	6,89	6,89 × 10 ⁻²	68,9	703	0,07	51,7	1			

